-
cschx=2/(e^x-1/e^x)
x=ln[(1+√1226)/35]
e^x=(1+√1226)/35
1/e^x=35/(1+√1226)=(√1226-1)/35
e^x-1/e^x=2/35
cschx=2/(2/35)=35
-
csch{ Ln[ ( 1 + √1226 )/35 ] }
= 2/{ e^Ln[ ( 1 + √1226 )/35 ] - e^-Ln[ ( 1 + √1226 )/35 ] }
= 2/{ e^Ln[ ( 1 + √1226 )/35 ] - 1/e^Ln[ ( 1 + √1226 )/35 ] }
= 2/{ ( 1 + √1226 )/35 - 1/[ ( 1 + √1226 )/35 ] }
= 2/{ ( 1 + √1226 )/35 - 35( 1 - √1226 )/[ ( 1 + √1226 )( 1 - √1226 ) ] }
= 2/{ ( 1 + √1226 )/35 + 35( 1 - √1226 )/1225 }
= 2/{ ( 1 + √1226 )/35 + ( 1 - √1226 )/35 }
= 2 * 35{ 1 + √1226 + 1 - √1226 }
= 70 * 2
= 140 。
如本站内容“对您有用”,欢迎随意打赏,让我们持续更新!
打赏