• 首页
  • 资讯
  • 专家
  • 话题
  • 问题库
  • 礼品商店
  • 分类
    • 新闻资讯
    • 娱乐八卦
    • 3C数码
    • 医疗健康
    • 健康养生
    • 云盘解析
    首页   ›   正文

定积分的计算

2021-12-06 23:28
859  4
教育科学 未结
关注
妩媚的小超
妩媚的小超 2021-12-06 23:28
相关标签:
4条回答
  • 最好的树洞
    2021-12-06 23:38

    以上解答满意了么?

    0
  • 爱自己的少
    2021-12-06 23:39

    计算这两道题要用三角公式  (sinx)^2 = (1/2)[ 1 - cos(2x) ]


    1、[ 1/(2π) ] ∫( 0,π ) { Im* [ sin(ωt) ]^2 } d(ωt)


    = [ Im^2/(4π) ] ∫( 0,π ) { 1 - cos(2ωt) } d(ωt)


    = [ Im^2/(8π) ] ∫( 0,π ) { 1 - cos(2ωt) } d(2ωt)


    = [ Im^2/(8π) ] [ 2ωt - sin(2ωt) ] ( 0,π )


    = [ Im^2/(8π) ] [ 2π - sin(2π) ] 


    = Im^2/4


    原式 = √( Im^2/4 ) = Im/2 。


    2、[ 1/(2π) ] ∫( π/2,π ) { Im* [ sin(ωt) ]^2 } d(ωt)


    = [ Im^2/(8π) ] ∫( π/2,π ) { 1 - cos(2ωt) } d(2ωt)


    = [ Im^2/(8π) ][ 2ωt - sin(2ωt) ] ( π/2,π )


    = [ Im^2/(8π) ][ 2π - sin(2π) - π + sin(π) ]


    = Im^2/8


    原式 = √( Im^2/8 ) = Im/(2√2) 。

    0
  • 不忘初心16
    2021-12-06 23:46

    两个题目中被积函数是一样的,只要对被积函数用三角函数中的倍角公式进行变换:

    Im^2*[sin(ωt)]^2=Im^2*{ [1-cos(2ωt) ] / 2 }

    再把各自的上下限代入计算就可以了。

    0
  • 瞌睡的精灵
    2021-12-06 23:47

    【如果】∫【0,π】[Isin(ωt)}²dt

    =I²∫【0,π】0.5[1-cos(2ωt)]dt

    =I²[0.5t-0.25sin(2ωt)]【上限π,下限0】

    =πI²/2-0.25sin(2πω)

    【若ω是整数】

    =πI²/2

    0
 看不清?
提交回复

如本站内容“对您有用”,欢迎随意打赏,让我们持续更新!

打赏
游客
登录后展示个人签名去登录
0文章 0问题 0回答 0点赞
写作
发布问题
发布文章
关注微信
加QQ群
随机文章
官方晒中兴AXON 30 Pro真机亮屏谍照:第二代屏下摄像头技术提升明显
2021-12-05 21:53:58
罗永浩辟谣最早下个月还完债务:限消令早已解除、将回归做AR产品
2022-03-22 08:22:30
小米12堆体验不堆参数 产品经理:本来有些担心 看到米粉反馈更有信心了
2021-12-29 08:19:15
白斑吃刺梨好吗 刺梨的好处
2021-12-05 23:01:24
四肢无力是怎么回事 四肢无力的原因和解决办法
2021-12-07 19:44:32
辟谷的好处 辟谷有什么好处
2021-12-05 00:02:43
全球第一方阵!中国5个新冠疫苗进入III期临床试验、量产在即
2021-12-05 22:22:55
酒吧相亲1小时消费了10080元 网友:相亲需谨慎套路要知悉!
2021-12-09 21:53:07
化疗后白细胞低吃什么食物补得快
2021-12-05 22:48:09
男子下车透气16万现金跟高铁跑了:钱比人先到站
2022-02-19 08:45:05
18个月+200万美元研发一款临床候选新药 Insilico Medicine刷新AI药物研发效率
2021-12-04 20:27:56
血糖低吃什么好 血糖低要怎么调理
2022-02-19 08:53:35
美国发现3.28亿年前最古老章鱼化石:故意命名为“拜登”
2022-03-11 07:52:38
从20MB小可爱到100TB巨兽 细数30年固态硬盘进化之路
2021-12-29 08:47:08
今日浙江疫情数据最新消息公布 浙江新增确诊病例3例
2021-12-05 22:43:33
热门标签
智能手机为何越卖越贵 马斯克加速抢滩一文了解脑机接口 凛冬将至苹果还能靠iphone支撑多久 新野蛮人马斯克 630wrtx 4090解锁极限功耗 马斯克没有打价格战的基因 ipad营收锐减卖不动了 小米13 lite现身小米13家族最便宜版本 感受守护网络安全的黑科技app 感受守护网络安全的黑科技 新一代影像性能旗舰努比亚z50官宣 黑亚当纽约首映式 黑亚当创下巨石强森个人最好成绩 超人归来电影免费观看 超人回归dc 超人回归 贝鲁奇谈贝鲁奇 辐射剧集首张剧照 大超与白狼不可兼得 用废品造的iphone你会买单吗
Copyright © 2026 网站备案号: 闽ICP备2020021158号-10 本站所有信息来自于互联网或网友上传,如有侵权,敬请来信联系我们,1494738443@qq.com 我们立刻删除。
responsive_hankin 主题. Designed by 极速问答社区
赞赏作者

请通过微信、支付宝 APP 扫一扫

感谢您对作者的支持!

 支付宝 微信支付